




















Figure 6. Relative fold change of gene expression and DNA methylation of a subset of identified gene transcripts. A) Relative fold
change in mRNA expression of genes MyoG, Trim63, Fbxo32, Chrna1, Ampd3, and Hdac4 (in descending order). All genes are
presented as means 6 SD (n = 6), Ampd3 (n = 3). Statistically significant changes in fold difference compared with sham control
group are indicated via *. Sham control group is represented with triangle icon. All TTX-treated groups are represented with a
square icon. B) Mean methylation data presented as relative fold change compared with sham control for genes: MyoG, Trim63,
Fbxo32, Chrna1, and Ampd3 (in descending order). Mean percentage data (black column bars) are the average taken from each
CpG island of the respective gene, analyzed via loci-specific pyrosequencing. Individual CpG island methylation percentages are
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DISCUSSION

Summary

The aim of this investigation was to elucidate the epige-
netic control of gene expression after skeletal muscle
disuse-induced atrophy after 3, 7, and 14 d of nerve block
with TTX. First, we observed a 7, 29, and 51% loss of
muscle at 3, 7, and 14 d of disuse, with 7 d of recovery
resulting in a 51.7% restoration of total muscle mass that
had been lost after 14 d of disuse. Muscle mass was
therefore similar after 7 d of disuse or 14 d of disuse fol-
lowed by 7 d of normal activity. Muscle atrophy was
further confirmed with fiber cross-sectional area data in
which a similar pattern of progressive loss of 18, 42, and
69%was observed after 3, 7, and 14d of TTX, respectively.
Seven days of recovery restored 63% of muscle cross-
sectional area vs. 14 d of disuse-induced atrophy alone.
Our original hypothesis was supported, in that disuse-
induced atrophy was associated with reduced DNA
methylation and enhanced gene expression. Both DNA
methylation and gene expression were partially returned
to baseline after 7 d of recovery from nerve block. Of im-
portance, after gene expression microarray analysis, we
found that 3714 genes were significantly differentially
regulated (P# 0.001) across all TTXgroups, and that these
genes were returned in the recovery group to levels that
wereobserved in shamcontrol. Specifically, by identifying
the top 20 most differentially expressed genes in the atro-
phy and recovery groups and cross-referencing with the
most frequently occurring significantly regulated genes
for between-group pairwise comparisons, we identified a
key subset of influential genes: MyoG, Hdac4, Trim63
(Murf1), Ampd3, and Chrna1. These genes—together
with Fboxo32 (Mafbx), because of its previously defined
role with Trim63 (Murf1) in muscle atrophy—were then
analyzed via real-time qRT-PCR to confirm microarray
gene expression data for these genes aswell as loci-specific
DNA methylation of the promoter regions by pyrose-
quencing. All of these genes—MyoG, Hdac4, Trim63/
Murf1,Ampd3,Chrna1, andFboxo32/Mafbx—havebeen
identified previously via transcriptome-wide analysis of
disuse-induced atrophy after neuromuscular blocker
a-cobrotoxin treatment (42). In this investigation, we have
identified novel data that suggest that MyoG, Trim63
(Murf1), Fbxo32 (Mafbx), and Chrna1 demonstrate re-
duced DNA methylation at specific time points after
disuse-induced atrophy that corresponded with increases
in gene expression at the same time points. Of importance,
after TTX cessation and 7 d of recovery, during which
normal habitual physical activity was resumed, there was
a return of DNA methylation for Trim63, Fbxo32, and
Chrna1 to sham control levels. This also corresponded

with the return of gene expression to that of baseline sham
control levels. Because the reduced DNA methylation
within promoter or enhancer regions of genes can lead
to enhanced gene expression as a result of reduced
methylation, which allows access for RNA polymerase
to enable transcription (43), our data suggest that atrophy
and recovery of skeletal muscle after disuse is associated
with dynamic and transient epigenetic modifications that
correspond with altered gene expression.

Dynamic and transient DNA methylation after
atrophy and recovery of muscle mass

Interestingly, 51.7%of totalmusclemass loss after 14dwas
restored after 7 d of recovery, yet, importantly, gene ex-
pression was returned fully to baseline after 7 d, which
suggests—as perhaps would be expected because of the
time required for transcription, translation, and protein
incorporation—a time lag between gene expression and
the physiological restoration ofmusclemass. The findings
in this study, however, suggest that reduced DNA meth-
ylation that corresponded with increased gene expression
ofMyoG, Trim63 (MuRF1), Fbxo32 (MAFbx), and Chrna1
are dynamic and transient events, in which decreases in
DNAmethylationat 3, 7, and14dofTTX-inducedatrophy
correspondwith increases in gene expression that, in turn,
are returned to baseline (Trim63/MuRF1 and Chrna1)
within just 7 d after the removal of the TTX block. DNA
methylationhaspreviouslybeen reported tobemitotically
stable and, as such, environmental factorswerepreviously
believed to be unable to induce significant alterations in
DNA methylation at both acute and chronic time points
(44). Furthermore, our previous data suggest that even
after acute catabolic stress,DNAmethylation canbe stably
retained across several population doublings of muscle
cells in vitro (24); however,wedemonstrate here thatDNA
methylation does respond at a rate that allows for its
participation in the adaptive control of gene expression
and therefore adds additional weight to previous findings
in support of transient alterations of DNAmethylation in
skeletal muscle, for example, as previously after an acute
bout of aerobic exercise (24, 45). Our data therefore add
support to previous findings demonstrating transient al-
terations of skeletal muscle DNAmethylation.

Although not identified in this study, it will be impor-
tant in future studies to investigateDNAmethyltransferase
activity. The DNA methyltransferases (DNMT3a/3b)
are involved in the initial incorporation ofmethyl groups
to cytosine residues and the creation of 5-methylcytoseine
to increase DNA methylation. Maintenance DNA meth-
yltransferase (DNMT1) is involved in retaining themethyl
tag on the DNA strand (46). The dynamic and transient
observation of DNAmethylation in this study is perhaps

visualized as individual lines. DNA methylation data presented as means 6 SD for n = 3. *Statistically significant reductions
compared with the sham control group; §significant reduction compared with 7- and 14-d TTX atrophy; ✢significant reduction in
DNA methylation compared with 3-d TTX–exposed experimental group (B). C) An overlap schematic represents the
relationship between DNA methylation and mRNA expression of key transcripts (arbitrary units). bHLH muscle specific basic
helix-loop-helix; H&E, hematoxylin and eosin; MRF, myogenic regulatory factor.
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suggestive of high DNMT3a/3b activity in which initial
and rapid increases in DNA methylation are observed;
however, we do not report a significant retention of DNA
methylation upon TTX cessation (14-d TTX + 7-d re-
covery), which would perhaps suggest that DNMT1 did
notmaintain themethylation statusof someof thesegenes
during muscle recovery. It has previously been reported
that increases in both types of DNMT are observed after a
high-fatdiet that induces increases inDNAmethylationof
6508 genes (47). Additional work is needed to confirm
similar findings in atrophyingmuscle and to elucidate the
response of DNAmethyltransferases upon the reversible
insult. Finally, it would be important to undertake 14 d of
recovery in future experiments to assess whether muscle
mass canbe returned fully tobaseline control levels and to
examine the transcriptomic and epigenetic responses
during this period.

DNA methylation correlates with important
changes in skeletal muscle gene expression
after disuse-induced atrophy and with the
return of gene expression to baseline
during recovery

As suggested above, MyoG, Trim63, Fbxo32, and Chrna1
demonstrated decreased DNA methylation after disuse-
induced atrophy that corresponded with increased gene
expression. Of importance, after TTX cessation and 7 d of
recovery, during which normal habitual physical activity
was resumed, DNA methylation of Trim63 and Chrna1
returned to sham control levels as the supressed levels of
gene expression recovered. The muscle-specific basic
helix-loop-helix transcriptional factor and member of the
myogenic regulatory factors, MyoG, is commonly associ-
atedwith the coordination of skeletalmuscle development/
myogenesis or skeletal muscle regeneration and, specifi-
cally, the differentiation/fusion of skeletalmuscle cells (48).
Here, we report a significant induction of gene expression
for this transcription factor upon disuse-induced muscle
atrophy. Because expression of this protein is usually as-
sociated with muscle regeneration, this may reflect a com-
pensatory mechanism in an unsuccessful attempt to halt
atrophy or to respond to a return of activity. The role of
MyoG as a transcription factor has previously been linked
with the regulation of the ubiquitin E3 ligases, Trim63 and
Fbxo32, and associated muscle atrophy (34). We provide
novel data that suggest that theDNAmethylationprofile of
this transcript is altered in an inverse fashion to its mRNA
expression. Indeed, at 3, 7, and 14 d, we observed a signif-
icant reduction inMyoGDNAmethylation and an increase
in MyoG transcript expression; therefore, we suggest that
increased MyoG gene expression is regulated by reduced
MyoG DNAmethylation.

Previous studies have also reported that MyoG gene
expression is under the regulatory control of class II Hdacs
(34, 35). In partial support of this notion, we report a sig-
nificant increase in Hdac4 gene expression at 3 and 14 d
of TTX exposure; however, we did not measure protein
abundance or the phosphorylation/deacetylation status
of Hdac4. Indeed, the initial screening of Hdac4 DNA

methylation viaHRM-PCRwas unable to detect a notable
change, with global gene percentage methylation indi-
cating no methylation above 0% methylated controls.
Therefore, additionalworkat theprotein andhistone levels
is needed to elucidate the epigenetic regulation of Hdacs
during periods of loss and recovery of muscle mass, as its
altered gene expression after denervation does not seem to
be controlled viaDNAmethylation. Furthermore, despite a
return of MyoG gene expression to control levels after
7 d of recovery, DNA methylation continued to reduce
in the recovery group. This suggested that while reduced
DNAmethylation may have been important in increased
gene expression during denervation-induced atrophy,
DNAmethylationwas not controlling the gene expression
of MyoG during recovery.

As previously suggested, downstream transcriptional
targets of MyoG have also been shown to be highly in-
duced in rodents during periods of muscle loss caused by
denervation, immobilization, and unloading (49, 50).
Trim63 is anE3ubiquitin ligase and amember of theRING
zinc finger family of proteins that directs the poly-
ubiquitination of proteins to target them for proteolysis.
With catabolic stimuli, such as diabetes, cancer, denerva-
tion, unloading, and glucocorticoid or cytokine treatment,
its expression has consistently been demonstrated to in-
crease (50, 51). Previous studies have also suggested that
upon denervation, Northern blot analysis identified a sig-
nificant increase in Trim63 and Fbxo32 after 3 d of muscle
atrophy, that continued through to7d (50).Here,we report
a significant increase in Trim63 and Fbxo32 gene expres-
sion via real-timeqRT-PCRcomparedwith control levels in
parallel with a reduction in DNA methylation. This sug-
gests an important role for epigenetic control of these
ubiquitin ligases in the resulting protein degradation and
muscle loss that has been observed in this study. We note
that DNA methylation of both of these ubiquitin ligases
increased to control levelswith corresponding decreases in
gene expression to the sham control level, which also
suggests that the reductions in DNA methylation during
atrophy can be dynamically regulated.

Furthermore, Chrna1 makes up the majority of the
muscle-specific nicotinic acetyl choline receptor (nAChR)
in adult skeletal muscle (52) and plays a crucial role in
initiating the opening of the nAChR channels and the
transfer of positively charged ions (53). We reported a
progressive increase in gene expression resulting in a cu-
mulative significant fold change after 14 d of TTX expo-
sure. This alteration in gene expression was met with a
parallel progressive reduction in DNA methylation with
significance being observed at both 7 and 14 d after TTX-
inducedatrophy.Anobservation similar topreviouswork
(54), inwhich a significant increase in Chrna1 activitywas
observedasa result of sarcopenia.nAChRsaremadeupof
5 isoforms in human skeletal muscle, inwhich the subunit
Chrna1 is most dominant. These isoforms function to
create an acetylcholine cluster around the neuromuscular
central pore, in which they house target binding sites
predominantly locatedat thea-subunit in the extracellular
domain near the N terminus. Upon contact of a chemical
messenger to the binding site, all present subunits un-
dergo a conformational change that results in the opening
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of the nAChR channel (55). Upon denervation, however,
no actionpotentialmessages are received and, therefore, it
is possible that the reduced DNA methylation and in-
creased transcriptional response—although we do not
provide evidence of protein levels—may increase as a
compensatory mechanism that is understood to increase
the chance of forming new end plates. This response is
equivalent to that observed after nerve section and it
seems, therefore, to be a response to the lack of activity
rather than the physical absence or damage to the nerve.
Further, upon TTX cessation and muscle recovery, we
report a return of Chrna1 DNA methylation and gene
expression back towards sham control levels.

Finally, it is important to note that MyoG, ubiquitin
ligases, and Chrna1 have been identified as major regu-
lators of muscle regeneration, protein degradation, and
function, respectively, and that the present study identi-
fied these genes as being the most frequently occurring,
differentially expressed genes across comparisons by us-
ing anonselective transcriptome-wide approach in anovel
model of osmotically administered TTX-induced atrophy.
Therefore, these data further consolidate the important
role for epigenetics in the regulation of these genes in
disuse-induced atrophy and the recovery of skeletal
muscle following a return to activity.

CONCLUSIONS

MyoG, Trim63, Fbxo32, and Chrna1, but not Ampd3,
demonstrate decreased DNA methylation after disuse-
induced atrophy that correspond with increased gene
expression and muscle atrophy. Importantly, after TTX ces-
sation and 7 d of recovery, there was increased DNA
methylation of Trim63 and Chrna1 to control levels that
also corresponded with the return of gene expression to
that of baseline in shamcontrols.Overall, this suggests that
the atrophy and recovery of skeletal muscle after disuse is
controlled by the dynamic and transient epigenetic regu-
lation of gene expression.
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